Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis.

نویسندگان

  • Dongni Cao
  • Hui Cheng
  • Wei Wu
  • Hui Meng Soo
  • Jinrong Peng
چکیده

Severe Arabidopsis (Arabidopsis thaliana) gibberellin (GA)-deficient mutant ga1-3 fails to germinate and is impaired in floral organ development. In contrast, the ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 mutant confers GA-independent seed germination and floral development. This fact suggests that GA-regulated transcriptomes for seed germination and floral development are DELLA dependent. However, it is currently not known if all GA-regulated genes are GA regulated in a DELLA-dependent fashion and if a similar set of DELLA-regulated genes is mobilized to repress both seed germination and floral development. Here, we compared the global gene expression patterns in the imbibed seeds and unopened flower buds of the ga1-3 mutant with that of the wild type and of the ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 mutant. We found that about one-half of total GA-regulated genes are apparently regulated in a DELLA-dependent fashion, suggesting that there might be a DELLA-independent or -partially-dependent component of GA-dependent gene regulation. A cross-comparison based on gene identity revealed that the GA-regulated DELLA-dependent transcriptomes in the imbibed seeds and flower buds are distinct from each other. Detailed ontology analysis showed that, on one hand, DELLAs differentially regulate the expression of different individual members of a gene family to run similar biochemical pathways in seeds and flower. Meanwhile, DELLAs control many functionally different genes to run specific pathways in seeds or flower buds to mark the two different developmental processes. Our data shown here not only confirm many previous reports but also single out some novel aspects of DELLA functions that are instructive to our future research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Della proteins and gibberellin-regulated seed germination and floral development in Arabidopsis.

RGA (repressor of ga1-3) and GAI (gibberellin insensitive) are negative regulators of plant hormone gibberellin (GA) signaling in Arabidopsis. The GA-deficient mutant ga1-3 is a nongerminating, extreme dwarf that flowers late and produces male-sterile flowers. The rga and gai null alleles interact synergistically to rescue vegetative growth and floral initiation in ga1-3, indicating that RGA an...

متن کامل

Arabidopsis RGL1 encodes a negative regulator of gibberellin responses.

In Arabidopsis, the DELLA subfamily of GRAS regulatory genes consists of GAI, RGA, RGA-LIKE1 (RGL1), RGL2, and RGL3. GAI and RGA are known to be negative regulators of gibberellin (GA) responses. We found that RGL1 is a similar repressor of GA responses, as revealed by RGL1 gain-of-function and loss-of-function phenotypes. Repression of GA responses in Arabidopsis was conferred by a dominant 35...

متن کامل

Lifting della repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling.

DELLA repression of Arabidopsis (Arabidopsis thaliana) seed germination can be lifted either through DELLA proteolysis by the ubiquitin-proteasome pathway or through proteolysis-independent gibberellin (GA) hormone signaling. GA binding to the GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptors stimulates GID1-GA-DELLA complex formation, which in turn triggers DELLA protein ubiquitination and pr...

متن کامل

Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA promoter binding-like transcription factors.

Gibberellin (GA), a diterpene hormone, plays diverse roles in plant growth and development, including seed germination, stem elongation, and flowering time. Although it is known that GA accelerates flowering through degradation of transcription repressors, DELLAs, the underlying mechanism is poorly understood. We show here that DELLA directly binds to microRNA156 (miR156)-targeted SQUAMOSA PROM...

متن کامل

Proteolysis-Independent Downregulation of DELLA Repression in Arabidopsis by the Gibberellin Receptor GIBBERELLIN INSENSITIVE DWARF1 W

This article presents evidence that DELLA repression of gibberellin (GA) signaling is relieved both by proteolysis-dependent and -independent pathways in Arabidopsis thaliana. DELLA proteins are negative regulators of GA responses, including seed germination, stem elongation, and fertility. GA stimulates GA responses by causing DELLA repressor degradation via the ubiquitin-proteasome pathway. D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 142 2  شماره 

صفحات  -

تاریخ انتشار 2006